
0 Fermi National Accelerator Laboratory 

FERMILAB-Pub-84157-T 
June. 1984 

Effect of Interactions Between Electrons 
of Like Spin in Conducting Polymer3 

s. Kivelson 
Department of Physics 

SUNY at Stony Brook 
Stony Brook, NY 11794 

H. B. Thacker 
Fermi National Accelerator Laboratory 

P.O. Box 500 
Batavia, IL 60510 

W.-K. Wu 
Department of Physic3 

SUNY at Stony Brook 
Stony Brook, NY 11794 

Abstract 

We consider the effects of repulsive electron-electron interaction3 

between electrons of like spin in conducting polymers. Because the 

ratio W/Zm of the physical band width W to the band gap 2m is large in 

these systems, they may be represented by a field theory model with a 

cutoff. When only interactions between like spins are included, the 

resulting model is equivalent to the massive Thlrring model which has 

been exactly solved by Bethels ansatz. From the exact solution we are 

able to conclude that perturbation theory in the interaction strength g 

is quite accurate 30 long as (g/n)ln(W/Zm)<<l, while renormalization 

group improved perturbation theory is valid for (g/a)<<l. For (g/x)21, 

results for the ground state energy and mass gap are sensitive to the 

band structure far from the Fermi surface, and no simple field theory 

model 13 adequate. 

a Operated by Unlver~itles Rewarch Association Inc. under contract with the United States Department 01 Energy 
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In the light of the apparent auccesaes of the simple 

non-interacting model of polyacetylene proposed by Su, Schrieffer, and 

Heeger'(SSH) in explaining many of its experimentally observed 

properties, it is important to investigate the role of electron-electron 

interaction3 in polyacetylene, and more generally in conducting 

polymers. In particular we would like to begin to answer the following 

questions: Is it possible to construct a simple model of a conducting 

polymer that is quantitatively reliable? If 30, what sort of 

electron-electron interactions must be included and how strong are they? 

And finally, can they be treated perturbatively or must they be 

introduced in some more fundamental fashion? 

There is reason to hope that the answer to the first question is 

affirmative. The ratio (W/Zm,) of the band width W to the band gap Zm, 

and hence the correlation length E,, in units of the lattice constant, 

(~/a)=(W/Zm,), is large. Thus, the long wavelength properties of the 

system may be relatively insensitive to microscopic details of the 

material. More precisely, it allows us to replace the lattice model 

with a continuum (field theoretic) model with a finite cutoff (the band 

width). Such a model was considered by Takayama, Lin Liu, and Maki2 

(TLM) for the non-interacting system, and they obtained results in good 

quantitative agreement with those obtained for the SSH model. More 

generally, in the large 5 limit we expect the system to be well 

approximated by a continuum model with only a few relevant interactions 

whose strength is some complicated (and unknown) function of the 

parameter3 of the underlying lattice model. (Note however, that since 

(E/a) - 5-10, it is not entirely clear that the "irrelevant" 

interactions are small enough to be ignored, even though they are higher 
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order in (a/c).) 

Even if the low energy physics of conducting polymers can be 

accurately modeled by a few effective interactions, the relative 

strengths of these interactions must be studied. A number of recent3-lo 

papers have begun to address this second question. One strategy which 

can be adopted is to calculate various properties of an interacting 

model as a function of the strength of the interactions, and then, by 

comparing these properties with experiment, try to deduce the actual 

interaction strengths. For instance, in Refs. (3-7) the effect of 

adding to the SSH model an on-site (Hubbard) repulsion of magnitude IJ 

between electrons of opposite spin was considered. It was concluded in 

Ref. 5 that, to the extent that the interactions can be modelled 

by a single U , the size of U could be determined unambiguously to be 

less than W/Z, while in Refs. 6 and 7 it was concluded that there was 

at present insufficient experimental evidence to bound U, but that it 

could be as large as U-W. A related issue is whether a non-interacting 

model is a. valid zeroth order approximation to the physics, i.e. 

whether the interaction3 can be treated perturbatively. Although in 

general perturbation theory is not even asymptotically convergent in a 

one-dimensional metal, it has been argued ” that in a one-dimensional 

semiconductor, perturbation theory is valid 30 long as 

(U/W)ln(W/2m,) << 1 (1) 

In this paper we consider the effect of interactions between 

electron3 of like spin on the ground state properties of the continuum 

model of a conducting polymer. The advantage of considering only these 
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interaction3 is that the model is then equivalent to the exactly 

solvable massive Thirring model. " Hence, we can examine both the 

physical consequences of these interaction3 and the validity of 

perturbation theory in a well controlled fashion. It is a130 

interesting to study these interaction3 a3 representing the opposite 

extreme from the Hubbard model which forma the core of most previous 

studies. (The Hubbard model includes only interactions between 

electrons of unlike spin.) Because the interactions we consider are 

only between electrons of like spin, the electronic Hamiltonian can be 

expressed as the sum of two terms, one acting only on electrons with 

spin up, and the other on electrons with spin down. Thus, we can ignore 

the electron spin in all of our calculations. 

We are lead to consider a model Hamiltonian similar to the TLM 

model with interactions. 

H el = jdx [$+[-ihvF&s + m,(x)sxlQ + 2g0$t$t$ $ (2) 
1221 

where $(x) is a spinor field with two components corresponding to right 

and left moving electron3 respectively, si are the Pauli matrices, vF is 

the Fermi velocity (henceforth, we shall choose unit3 such that hvF=l), 

and go is the electron-electron interaction. Notice that our sign 

convention is such that g,>O corresponds to attractive interaction3 

between electrons and g,<O to repulsive interactions. The scalar field 

m,(x) is proportional to the magnitude of the lattice (Peierls) 

distortion relative to an appropriately chosen undistorted lattice 

Configuration, that iS m,(x) is the magnitude of the bond alternation in 
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the polymer (see Refs. 1 and 2). m,,(x) is properly a dynamical field, 

involving the motion of the ions, but following previous authors’ ‘* we 

will invoke the large ionic mass to allow us to ignore fluctuations of 

the lattice. Thus, the relevant lattice configurations are those which 

minimize the total adiabatic potential energy 

E,(M) = *<HeI> + ~dx[mO(x)-m,12/21 (3) 

where <H,l> is the ground state expectation value of He1 as a functional 

of m,(x) (the factor of 2 is for spin), and the second term is the 

lattice elastic energy. m, is an asymmetry parameter which is zero in 

the case of trans-(CH)x where the two senses of bond alternation (km,) 

are equivalent, and non-zero in the case of most other conducting 

polymers, such as cis-(CH)x or polydiacetylene, where they are 

inequivalent. The ground state configuration of the lattice is 

translationally invariant, b(x)=m, where A0 is the magnitude of the 

lattice distortion which minimizes the total energy. It is also 

possible under appropriate circumstances to find non-translationally 

invariant lattice configurations which are local minima of the adiabatic 

potential, but we will not examine those cases here. 

The model in Eq.(2) is ill-defined until a regularization or cutoff 

procedure is specified. Note that we are here studying the effect of 

electron-electron interactions on static properties such as the ground 

state energy and the relation between the dimerization (bare mass) and 

the physical mass gap. In field theory these are cutoff-dependent 

quantities, and thus different cutoff prescriptions can lead to 

different results. But since the band structure of an actual conducting 
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polymer is much more complicated than that of Eq.(2), any term which 

turns out to depend on the cutoff procedure is suspect. In our 

discussion we will study this dependence in detail and thereby determine 

over what range of parameters a simple field theory model can give 

reliable results 

In the Bethe ansatz solution of the problem, the natural 

regularization procedure is a cutoff in the real part of the complex 

rapidity A. When g,=O, this cutoff is related to the half band width W/2 

by 

W/2 = m,coshA (4) 

since W/2 is the highest energy single particle or hole excitation 

allowed in the model. We shall see that for Small g,, the most 

important features of the solution are independent of regularization 

scheme. To highlight those features, we will compare the Bethe ansatz 

solution with the results of low order perturbation theory. 

The solution to the model is most convenniently expressed in terms 

of the parameter 6, 

6=-l- If 
C2cot-‘($gigo)1 

= -(go/n) + (g,/n)2 + . . . (5) 

where 6 is an analytic function of g 0 such that 6>0 for repulsive and 

S<O for attractive interactions between electrons. In terms of 6, the 

exact results’2 which will be used in our investigation can be 

summarized as follows: 

(1) The single fermion excitations have a dispersion relation 
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where E is the particle (or hole) energy, p is its momentum, and 

m = moC,(g,)e-6h (6b) 

(2) The total ground state electronic energy (with all negative energy 

states filled) is 

<Hel> = - ~~~,(go)e2* + ~[C,(g,)-C,(g,)e-2*11 (7) 

In (6b) and (7), Ci(g,) are analytic functions which depend on g, only. 

The form of these functions depends on the particular prescription used 

to cut off the model (e.g. a continuum rapidity cutoff”, or a lattice 

cutoff via the Baxter XYZ spin chain 13). For small g, they have the 

behavior 

Ci(f30) = 1 + O(gJn) 8 i=O,1,2,3 (7') 

but the higher order terms are prescription-dependent. On the other 

hand, the cutoff dependence exhibited in (6b) and (7) is universal. 

From the above results we see that the effect of repulsive 

electron-electron interactions are twofold: they change (decrease) the 

magnitude of the dimerization m, which minimizes ET in Eq.(3), and, for 

a fixed value of m,, they decrease the magnitude of the physical band 

gap Cm%). Notice that both m and <Hel> are analytic functions of 6 

(and hence of go) for /6/<1/2 (g,<2). Thus, we can expand the exact 

expressions in a power series in g,, and compare the result to the 
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result of perturbation theory. To make this comparison more tranSparent 

we define the band width, W, according to Eq.(4) and express the answer 

in terms of W rather than A. For large (W/m,) we can make use of the 

relation 

A = l*Wm,) - (mdw)* + O((mo/W)‘) (8) 

and we will systematically ignore terms of order (m,)a and higher. 

Thus, from Eq.(6b),(7), and (8) we find 

m = m,C,(l + +n($) + (~)‘[$*2[&l - l”Ck)l 

+ oqq’, + o((+)‘)t (9a) 

<Hel> = - !gL 

b*(c,-c,) _ mo2 
46 

x {l*(k) + +ln’[&) + Z(~)‘[ln’(&) - +lnz[k)]] 

+ o[(fq’, + o(++, (9b) 

Notice that successive terms in the expansion are small so long as 

/g,/n]ln(W/m,)<<l, as promised. For comparison, we calculate the same 

quantities in second order perturbation theory with a momentum space 

cutoff -W/2<kSW/Z. The result is 
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+ [~)*[;ln2($ - (Y+1*2-1)1*[&) + const.] 

+ O(&‘)l 

<Hel>PT = - gr1 - (+,I 

- glb”(~) + 11 + [+)lnz[k)] + O(go*) 

(lOa) 

(lob) 

where Y=0.577.. . is Euler’s constant. In these perturbative 

calculations, we have defined the momentum space cutoff so that the 

first order contribution to the physical mass is exactly the same in the 

two approaches. Note that in each order of perturbation theory, only 

the leading logarithm is independent of cutoff procedure. 

In the language of perturbation theory we can understand this since 

all the intermediate states that contribute to the leading logarithm 

have small energies -m, and hence are insensitive to the cutoff 

procedure. lo To the extent that these terms dominate, the results of the 

model calculations can be said to be realistic and can be compared 

quantitatively with experiments on conducting polymers. All the other 

terms involve intermediate states with energies of order W. These terms 

will, in general, be sensitive to the band structure near the band edge. 

To the extent that these terms are important, no simple model can be 

compared quantitatively with experiment; even a lattice model such as 

the SSH model is only marginally better. Quantitative information would 
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the” require a complete knowledge of the (rather complicated) band 

structure of the material. 

We have thus found a partial answer to our original question. To 

determine where the simple models are reliable, we distinguish three 

ranges of interaction strengths: 

(1) The perturbative regime (m,/W)<<l and (g,/~)ln(W/m,)<<l. In this 

regime the simple models are reliable since the states near the Fermi 

surface dominate the physics. Moreover, the effects of 

electron-electron interactions can be reliably calculated using low 

order perturbation theory. 

(2) The scaling regime (m,/W)<<l and (g,/rr)<<l (which includes the 

perturbative regime), In this regime the model is still reliable but 

finite order perturbation theory is not necessarily useful. However, by 

proper resummation of perturbation theory (summing leading logarithms) 

using the renormalization group approach,15 it is possible to reproduce 

all the universal features of the exact solutions. The difference 

between exact and perturbative results, like the difference between 

exact results for models with different cutoffs, involves differences in 

the next to leading terms in Ci(g,). We stress that these differences 

are not problems associated with one or another calculational scheme; 

they are features which depend on the band structure far from the Fermi 

surface and hence are features which are not obtainable from any Simple 

model. When expressed in terms of the bare parameters g, and m,, there 

are necessarily model dependent corrections to any physical quantity at 

least of order go or of order (m,/W)‘, which is therefore a fundamental 

limit on the accuracy of model calculations. 

(3) Non-universal regime (m,/W) - 1 or (go/n) 2 1. In this regime the 
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simple models have little bearing on the ground state properties of the 

real materials; to obtain reliable results it would be necessary to 

include the correct band structure within an energy interval of at least 

a few times the larger of m, or g,W of the Fermi surface. 

This still does not answer the question of what the actual physical 

interactions are in real conducting polymers. Of course, the massive 

Thirring model is almost certainly not the correct physical model in any 

regime. Nevertheless, the considerations we have applied here to the 

massive Thirring model can also be applied to models with more general 

interactions l5 characterized by a coupling strength g. If, as suggested 

in Ref. 5, typical values of the parameters in polyacetylene are 

(m,/W)-0.15 and (g/v)-+, then one may be able to compare the qualitative 

results of simple model calculations with experiment, but the models 

cannot be trusted quantitatively to better than something like 30% 

accuracy. If the interaction strengths are much stronger than this, 

then the simple models cannot be trusted at all. 
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